(esi) Decade Resistance Substituter

RS925D Page 1 of 1

Features:

- High accuracy 20 ppm
- High stability 5 ppm/yr
- Low temperature coefficient as low as 3 ppm/°C
- High-performance, solid silver contact switches
- Resistance from 10 m Ω to over 1.21 M Ω
- 20 $\mu\Omega$ resolution rheostat
- Hermetically sealed, low inductance resistors
- · Precise fixed minimum resistance

The IET (esi) RS925D is a four-terminal, continuously variable decade resistor for the most exacting calibration and test applications.

SPECIFICATIONS

Resistance per step	Total decade resistance	Max current	Max power	Temperature coefficient	Power coefficient	Stability	Decade positions	Resistor type
		whichever applies first		(±ppm/ºC)	(±ppm/mW)	(±ppm/yr)	Decade positions	nesistor type
100 $\mu\Omega$ division 20 $\mu\Omega$ resolution	10 mΩ	2 A	NA	20	1	20 ppm+0.5 mΩ	Continuous	Rheostat
10 m Ω	100 mΩ	2 A	NA	20	1		10 positions "1"-"10" (10 m Ω minimum reading	Resistance wire
100 m Ω	1 Ω	2 A	NA	20	1		11 positions "0"-"10"	
1 Ω	10 Ω	1 A	5 W	20	0.4			Wirewound hermetically sealed low-inductance
10 Ω	100 Ω	0.33 A	5 W	10	0.3			
100 Ω	1 kΩ	0.1 A	5 W	3	0.1			
1 k Ω	10 kΩ	33 mA	5 W	3	0.1	10 ppm (<5 ppm typical)		
10 k Ω	100 kΩ	10 mA	5 W	3	0.1			
100 k Ω	1 ΜΩ	3 mA	2,000 V peak	3	0.1		12 positions "0"-"11"	
Wiring and switch resistance		NA		50 μΩ/ºC	0.2 μΩ/W	NA		

Accuracy:

 \pm (20 ppm+0.5 m Ω)

At 23°C "true ohm" measurement,

30-70% RH, absolute reading, SI traceable

No zero subtraction required

Minimum resistance:

10 m Ω ± 0.5 m $\Omega;$ determined by the lowest settable position, "1", of the 10 m $\Omega/step$ decade

Resistance repeatability:

Better than 100 $\mu\Omega$, short-term, average value

Leakage Resistance:

>10 GΩ

Environmental Conditions:

Operating Temperature: 0°C to 55°C Storage Temperature: -40°C to 70°C

Switch Type

Multiple solid silver contacts; dust-tight diallyl-phthalate body.

To allow continuous rotation, a blank position is added on most decades.

Terminals:

Four, 5-way, gold-plated, tellurium-copper binding posts with low thermal emf and low resistance, for four-terminal Kelvin measurements, plus one binding post connected to case for shielding. Rear outputs are available as an option.

Mechanical Information:

Dimensions: 48.3 cm W x 17.8 cm H x 19.7 cm D (19" W x 7" H x 7.8" D)

Weight: 5.1 kg (11 lb)

KELVIN BRIDGE MEASUREMENT

RHEOSTAT.

For high-resolution applications, a 10 m Ω rheostat is used for the lowest step. It is a 20 $\mu\Omega$ resolution "decade". In order to eliminate contact resistance and thermal emf, the **RD925D** integrates the rheostat as shown. In this way, the wiper is in the low potential circuit, which is the high impedance lead. As a result, voltage and contact resistance effects are removed by being effectively added to the input impedance of the measuring instrument.